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The Deepwater Horizon oil spill (leak)  

       April 20 - July 15, 2010 

IS THERE ANYTHING WE CAN DO TO STOP THE LEAK(s) ? 

Fukushima Dai-ichi Nuclear Power Plant 

            March 11, 2011 - ?? 



IS THERE ANYTHING WE CAN DO TO STOP THE LEAK(s) ? 

IPCC, 2007.  

                The Leaking Nitrogen Cycle   

Atmospheric Nitrous Oxide (N2O) Concentrations 

                            1850 -  ???? 

N2O (ppb) 
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NOAA/ESRL halocarbons in situ program  ftp://ftp.cmdl.noaa.gov/hats/n2o/insituGCs/CATS/global/insitu_global_N2O.txt

Rising Atmospheric N2O 

 ~ 20% above pre-industrial levels 

Slope = 0.77 ppb y-1 

    r2  = 0.995 



Fertilizer application:        40% 

Manure application & mgmt:   40% 

Biomass burning :          7% 

Industrial:         14% 
 

Davidson, 2009; Mosier et al.,1998 

Anthropogenic N2O Sources 
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China, 34% of total

India, 15%

U.S., 11%

Pakistan, 3%

Indonesia, 2.8%

African Continent, 2.8%

Brazil, 2.5%

France, 2.1% 

Canada, 1.8%

Bangladesh, 1.2%

87% of total increase since 1980 occurred in China and India

http://www.fertilizer.org/

China 

U.S. 
India 

World Fertilizer Use 



 2 kg N2O-N = CO2 from 

100 gallons of gasoline 

Global Warming Potential (GWP) = 300 times CO2 

2 kg N2O-N ha-1 ≈ 1 Mg CO2 ha-1 
 



IPCC, 2007 

% of total anthropogenic GHG emissions 

Global Warming Potential (GWP) = 300 times CO2 



ODP = Ozone Depleting Potential 

N2O 

Ravishankara et al.  Science. 2009 

“By 2050, N2O emissions could 

represent > 30% of peak CFC 

emissions of 1987.” 
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Greenhouse Gas Sources 

in U.S. Agriculture (2006) 

GWP= Global Warming Potential 

Policy activity & demands 

 

                  e.g., 2008 Farm Bill 
Requires USDA to develop scientifically-based 

guidelines to allow individual farming operations to  

quantify their N2O and overall GHG emissions. 



Few studies examining N fertilizer management practices 

 

• Comparison of fall- vs. spring- applied AA:   1 study (0 in MN) 

• Comparison of AA with and w/out N serve: 1 study (0 in MN) 

• Single versus split applications:  1 study (0 in MN) 

 

• Few empirically-based guidelines for reducing N2O while maintaining crop yields 

Fertilizer Management Effects 



Review our recent research regarding synthetic N fertilizer mgmt effects: 

 

1. Controlled release fertilizers (CRFs) 

 

2. Effects of different chemical fertilizer forms 

 

3. Placement (depth and banding) effects 

 

4. Mechanisms & modeling 

 

5. Tillage effects 

 

6. Nitrogen use efficiency (NUE) 

Outline 
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Methods: Gas Flux Chambers 

Pro: 

• Plot-scale studies & treatment comparisons 

• Inexpensive  

 Con: 

• Limited spatial and temporal coverage 

• Physical disturbance 



Methods: Automated Chambers 
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         Data 

 

Cumulative Emissions 

        mg N m-2         
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(1 kg N ha-1 = 100 mg N m-2) 

Methods: Data Analysis 



 

Direct emissions 

 

N2O 

   Managed  

field boundary 

                                               Direct and Indirect N2O Emissions 

 

Indirect emissions 

 

N2O 

NO     NH3 

     NO3
- 

Challenges: 

 

1. Logistical  - measuring all forms of N loss in a single experiment 

Chambers for NO and NH3;  Lysimeters, water sampling for NO3
- 

 

2. Estimating fraction of off-site N losses converted to N2O 

< 0.5 % to 5 % 

~ 25% of  

total national 

emissions 

40 – 50% for  

some systems 



         Asynchrony between N fertilizer application and crop N demand 

Iowa State University Extension 

Corn N Uptake 

High potential for generating N losses: 

Provide substrate for soil microbial population 

Preplant 

53% 

Fall application 

35% 

~ 10% 



      Controlled Release Fertilizers (CRFs) for Reducing N2O Emissions 

GOAL:  Achieve more gradual N release over growing season: 

 

1. Polymer–coated urea (PCU):   Slow diffusion through porous coating 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2O diffuses in 

Urea diffuses out 

© 2011Agrium Advanced Technologies (U.S.) Inc.  



            Polymer-coated Urea (PCU) for Irrigated Potato Production 

            Source   Timing        Rate (kg N ha-1) 

1. Conventional urea (47%N) 4 split applications 270 

2. PCU-1                   (44%N) Before planting  270 

3. PCU-2                   (42%N) Before planting  270 

Potato N Uptake 

North Dakota State University Extension 

Urea/UAN 

PCUs 



            Controlled Release Fertilizers for Irrigated Potato Production 

Hyatt et al. 2010. SSSAJ. 

Three-yr mean N
2
O emissions

Becker, MN
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            Source   Timing        Rate (kg N ha-1) 

1. Conventional urea (47%N) 4 split applications 270 

2. PCU-1                   (44%N) Before planting  270 

3. PCU-2                   (42%N) Before planting  270 

 

 

• N2O either decreased or same 

• No yield difference  



Venterea et al. 2011. JEQ 

            Source   Timing        Rate (kg N ha-1) 

1. Conventional urea (47%N) 4 split applications 270 

2. PCU-1                   (44%N) Before planting  270 

3. PCU-2                   (42%N) Before planting  270 

            Controlled Release Fertilizers for Irrigated Potato Production 

Soil and leaching data for individual  years
Loamy sand, Becker, MN
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• N2O decreased 

• NO3
- leaching potential increased 

• Net effect on total emissions? 



                           Polymer-coated urea for reducing N2O emissions 

Other studies: 

 

• PCU-1 in irrigated and dryland corn at Becker:  No decrease in N2O 

 

• PCU-1 in dryland corn at Rosemount:  No decrease in N2O 

1. Potential advantages if product release rate is well matched to crop demand. 

 

2. No set of guidelines for knowing when/where specific products will be effective 

for reducing N2O emissions. 

 

3. Widespread adoption of PCU-1 (ESN) in potato production: due to work of Rosen 

et al. showing potential reduction in leaching (indirect N2O). 

 

4. Minimal adoption for corn production (< 3%). Yield benefits required to justify 

increased cost are not consistent. 



      Controlled Release Fertilizers (CRFs) for Reducing N2O Emissions 

GOAL:  Achieve more gradual N release over growing season: 

 

2. Nitrification (NI) inhibitors:  Blended or co-applied with fertilizer 

 

 

 

 

   NH4
+                 NO3

-  
 

 enzyme inhibitor 



          Controlled Release Fertilizers for Dryland Corn Production 

            Source    Timing        Rate (kg N ha-1) 

1. Conventional urea  (47%N)  Sidedress (V4-V6) 146 

2. Urea + DCD + NBPT      (47%N)  Sidedress (V4-V6)  146 

Urea 

Urea + NI +UI 

Treatments applied to both CT and NT treatments (in place for > 15 yr) 



          Controlled Release Fertilizers for Dryland Corn Production 

            Source    Timing        Rate (kg N ha-1) 

1. Conventional urea  (47%N)  Sidedress (V4-V6) 146 

2. Urea + DCD + NBPT      (47%N)  Sidedress (V4-V6)  146 

Venterea et al. 2011. JEQ 

Three-yr mean N
2
O emissions

Rosemount, MN
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Treatments applied to both CT and NT treatments (in place for > 15 yr) 

No significant effect on N2O emissions (or yield) 



1. Several studies, some  potential for reductions, but varying success.   

 

2. Many different chemical formulations, but little systematic comparison.  

 

3. Few guidelines for knowing when/where specific products will be effective for 

reducing N2O emissions. 

 

4. Yield benefits required to justify cost are not consistent, not widespread use. 

 

5. One exception: ~ 10% of MN corn producers use N-serve (nitrapyrin), mostly with 

fall-applied N. Some studies: decreased Nitrate leaching potential. Recent study 

in IA showed no reduction in direct N2O with N-serve.   

                           Nitrification inhibitors for reducing N2O emissions 

Other studies: 

 

• In irrigated and dryland corn at Becker:   No decrease in N2O 

 

• In dryland corn at Rosemount:   No decrease in N2O 



Survey of MN corn producers (MDA/ UMN/ NASS, 2010)  

Anhydrous ammonia = 46% 

Conventional Urea    = 45%

         > 90% 



                       Fertilizer Source Effects: Conventional Sources 
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          (data for 2008)35%

23%

29%

4%

10%

Nitrogen  Fertilizer Use by Type in U.S.  

AA + Urea = 58% 

Only 1 site-year of data comparing N2O emissions with AA and Urea prior to 2005 

(Thornton et al., 1996) 



Continuous corn Corn after soybeans

Three-yr average growing season N
2
O emissions

Rosemount, MN
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                        Anhydrous Ammonia versus Urea: Dryland Corn 

Source  Timing     Placement       Rate (kg N ha-1) 

1. Urea (47%N) Pre-plant Broadcast and incorporated 146 

2. AA (82%N) Pre-plant  Injected into subsurface band 146 

Treatments applied to both Corn following Corn and Corn following Soybean 



Irrigated corn

Two-yr average growing season N
2
O emissions

Becker, MN
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                      Anhydrous Ammonia versus Urea: Irrigated Corn 

Source  Timing          Placement           Rate (kg N ha-1) 

1. Urea (47%N) Pre-plant/Sidedress    Broadcast and incorporated 90 / 90 

2. AA (82%N) Pre-plant/Sidedress    Injected and banded  90 / 90 



Summary of studies in corn systems 

Emissions Factor (EF) Assessment 

Study EFAA: EFurea 

Thornton et al. (1996) 1.94 

Venterea et al. (2010) 2.60 

Fujinuma et al. (2011) 1.53 

Average 2.0 

                                    Anhydrous Ammonia versus Urea 

Worldwide AA Use 

U.S.  85% 

Canada  13% 

Mexico    1% 

Rest of world   1% 
(IFA Statistics) 

1 study in Canada wheat system: No difference in emissions. 

 * Lower N application rate (80 kg N ha-1) 

 

Is this enough evidence to drive a policy recommendation or 

do we need more studies ? 



              Anhydrous Ammonia versus Urea: Indirect N2O Emissions 

Fujinuma et al., 2011 (submitted);  Maharjan et al., 2011 (in preparation) 
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              Anhydrous Ammonia versus Urea: Indirect N2O Emissions 

2006 IPCC Guidelines for National Greenhouse Gas Inventories. De Klein et al.  

Fujinuma et al., 2011 (submitted);  Maharjan et al., 2011 (in preparation) 
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              Anhydrous Ammonia versus Urea: Indirect N2O Emissions 

2006 IPCC Guidelines for National Greenhouse Gas Inventories. De Klein et al.  

Lower limit of 95% CI
0.2% of NO
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Quantifying Indirect emissions one of biggest challenges  



                                        Fertilizer Placement Effects 

Conventional AA Injection 

• Slow tractor speed with high fuel use 

• 15-18 cm deep band 

Conventional “Deep” Applicator 

Shallow AA injection 

• Faster speed 

•10-12 cm deep band 

• Improved soil closure 

• Less fuel use 

New “Shallow/Fast” Applicator 

(very few studies) 



                                        Fertilizer Placement Effects 

Effect of AA Injection Depth on N
2
O Emissions

                                Breitenbeck and Bremner, 1986
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2009 2010

Effects of AA placement depth on N
2
O emissions

Becker, MN
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WHY ? 

Replicating experiment in Lamberton and Rosemount in finer texture soils 

                   Anhydrous Ammonia Placement Effects: Irrigated Corn 

Source  Timing          Placement          Rate (kg N ha-1) 

1. AA  Pre-plant/Sidedress    18 cm  90 / 90 

2. AA   Pre-plant/Sidedress    12 cm  90 / 90 
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                   Greater N2O Emissions with Anhydrous Ammonia 

Soil Nitrite (NO2
-) 

N2O flux 



                   Greater N2O Emissions with Anhydrous Ammonia 

Aerobic conditions 

Soil gas O2 concentration (%)
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      Laboratory kinetics experiments: N2O production under aerobic conditions 
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NO2
- added to soil    N2O production rate 

Biotic 

Abiotic 

Prod. rate = Kp [NO2
-]  

NO2
- added to soil    N2O production rate 



Venterea, 2007. Global Change Biol. 
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      Laboratory kinetics experiments: N2O production under aerobic conditions 



Venterea, 2007. Global Change Biol. 
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      Laboratory kinetics experiments: N2O production under aerobic conditions 



Venterea, 2007. Global Change Biol. 
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      Laboratory kinetics experiments: N2O production under aerobic conditions 
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      Laboratory kinetics experiments: N2O production under aerobic conditions 

Venterea, 2007. Global Change Biol. 
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                                            Nitrite-driven N2O production 

Venterea, 2007. Global Change Biol. 

High O2 N2 

“Chemo-denitrification” 



                                            Nitrite-driven N2O production 

NO2
- + H+ + 

Lignins 

Humic acids 

Phenolics 

Aromatics 

N2O 

Stevenson and Swaby, 1964 

Overlooked and  

understudied process 

“Chemo-denitrification” 



Broadcast Banded

Effects of Urea placement on N
2
O emissions

Engel et al., 2010
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                                            Nitrite-driven N2O production 
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- 

Banding of Urea 



                                            Nitrite-driven N2O production 

Banding as a beneficial fertilizer management practice 

Conserves Nitrogen/ Increases NUE 

-Slows nitrification and nitrate leaching 

-Limits contact with soil microbes 

-Increases root access to N 

-Decreases distance from plant to N source 

• With banding, it may be possible to have: 

 -Greater overall NUE 

 -And greater N2O emissions 

 

• N2O emissions usually are < 3% of applied N. 

Malhi et al., 1985. 1991; Yadvinder-Singh et al., 1994 

Robertson and Vitousek, 2009 



                                            Nitrite-driven N2O production 

     AA
(banded)

N Losses (N
2
O, NO, NO

3

-
)

Becker, MN

k
g

 N
 h

a
-1

0

25

50

75

100

a

b

     Urea
(broadcast)

Is there an optimum banding intensity or geometry that maximizes NUE and  

minimizes N2O emissions ? 

Banding as a beneficial fertilizer management practice 

Conserves Nitrogen/ Increases NUE 

-Slows nitrification and nitrate leaching 

-Limits contact with soil microbes 

-Increases root access to N 

-Decreases distance from plant to N source 

Malhi et al., 1985. 1991; Yadvinder-Singh et al., 1994 

Robertson and Vitousek, 2009 



                                    Modeling nitrite-driven N2O emissions 
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• Model can generate curves of nitrite accumulation 

but we can’t predict actual behavior 

 

• Little to no information on toxicity kinetics in soil 

 

• Critical / threshold concentrations ? 

 

• Wastewater treatment kinetic models:  

Applicable to soils ? 

Two-step Nitrification Model 



                                    Modeling nitrite-driven N2O emissions 

Diffusion-reaction model: simplified: NO2
- is not modeled 
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Tillage Management Effects on N2O Emissions 

Does reduced tillage decrease (or increase) N2O emissions ? 

 

Potential for N2O emissions to enhance (or offset) GHG benefits of reduced tillage 

Properties affected by long-term tillage mgmt 

Bulk density 

Water content 

Temperature 

Inorganic N 

Organic carbon 

Dissolved organic carbon 

Soil structure 



Tillage Management Effects on N2O Emissions 

Properties affected by long-term tillage mgmt 
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Vertical Profiles of Potential N2O Production 

Venterea and Stanenas. 2008. JEQ. 
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                                  Nitrogen Use Efficiency and N2O emissions 

Van Groenigen et al. 2010 

An elegant idea: N2O emissions will be minimized when NUE is maximized 
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Van Groenigen et al. 2010 

An elegant idea: N2O emissions will be minimized when NUE is maximized 
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N2O increased exp. 
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N surplus = Fertilizer N inputs – above-ground crop N uptake 

Not clear if this simple relationship is going to hold in the majority of cases 
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Summary & Conclusions 

1. In general, we think that any practice that increases NUE would tend to also 

minimize N2O emissions – more studies needed to confirm. 

 

 e.g.  * Split versus single applications 

  * N rate that is well-matched with yield potential 

  * Variable rate application where appropriate 

  * Optimizing other nutrients (P, K, S)  

 

  *Also expect these practices to minimize indirect emissions 

2. However, it’s not clear if all practices that increase overall NUE will decrease 

N2O emissions:  Banding ? 

 

3. Some alternative practices that may have the same overall NUE may have 

higher N2O emissions:  

  Depth of placement  

  Fertilizer source (AA vs. urea) 

3. Need more studies looking at these factors. 

 

4. Need better emissions models that account for these factors, because direct 

measurement of N2O emissions on farmer’s fields is impractical 



Broader Implications / Questions 

Optimization of fertilizer management is only part of solution; range of 

activities is required: 

 

1. Cover cropping / companion cropping / more diverse rotations to 

reduce N requirements and retain more N during non-growing season 

 

2. Restoration of riparian vegetation 

 

3. Edge of field denitrification barriers / bioreactors or controlled drainage 

systems to reduce stream nitrate inputs 

 (current research area, some practices may increase N2O emissions) 

Is there any hope of actually decreasing global N2O emissions in light of rising  

population and demand for food ?  

 ---With CO2, we have hope that renewable fuels can reduce emissions. 

 

Or is best we can hope for to minimize N2O emissions per unit of production? 

 

What will be long-term effects (GHG and ozone), even if we can minimize 

emissions on a yield-scaled basis? 


